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Pseudointegrable Andreev billiard
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A circular Andreev billiard in a uniform magnetic field is studied. It is demonstrated that the classical
dynamics is pseudointegrable in the same sense as for rational polygonal billiards. The relation to a specific
polygon, the asymmetric barrier billiard, is discussed. Numerical evidence is presented indicating that the
Poincare´ map is typically weak mixing on the invariant sets. This link between these different classes of
dynamical systems throws some light on the proximity effect in chaotic Andreev billiards.
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I. INTRODUCTION

Billiards have played a prominent role in the understa
ing of classical and quantum mechanics. In such a syste
particle moves freely in a domain with specular reflections
the boundary~the angle of reflection equals the angle of i
cidence!; see, e.g.,@1#. Billiards of a different kind are real-
ized in ballistic mesoscopic samples connected to a su
conductor@2,3#. The boundary of such anAndreev billiard
@4# consists of normal-conducting regions with specular
flections and superconducting regions with Andreev refl
tions, whereby electronlike quasiparticles with charge2q,
massm, and energy« above the Fermi energy in the norm
metal are retroreflected as holelike quasiparticles with cha
q, mass2m, and energy2«. In the absence of a magnet
field, retroreflected orbits are self-retracing and, therefo
periodic. The presence of a magnetic field allows for a ric
spectrum of dynamical behavior@4#.

In this paper, we study an interesting Andreev billiard, t
circular Andreev billiard in a uniform magnetic field. Ou
analysis will lead one to the conclusion that boundary po
separating normal and superconducting regions, hence
called critical points, have the same consequences on
classical dynamics ascritical corners in rational polygonal
billiards. In such a polygon, all anglesa j5mjp/nj between
sides are rationally related top, wheremj ,nj.0 are rela-
tively prime integers. The free motion inside a rational po
gon is characterized aspseudointegrable@5# since it shares
some properties of integrable systems:~i! the phase space i
foliated by two-dimensional invariant surfaces@6,7#; ~ii ! the
flow on these surfaces is ergodic and not mixing@8#, and, in
particular, not chaotic~see, e.g.,@9# for the definition of er-
godic properties!. Yet, in the presence of critical corners wi
mj.1 the dynamics is more complex:~i! the genus of the
surfaces is greater than one@5#; ~ii ! the dynamics is not qua
siperiodic; and~iii ! presumably weak mixing, but this i
proven only for a special subclass; see, e.g.,@8#. Numerical
evidence for weak mixing has been reported in@10,11#.

The paper is organized as follows. In Sec. II, we introdu
the circular Andreev billiard and derive its Poincare´ map,
which describes the collision-to-collision discrete dynami
We show that the dynamics is pseudointegrable, in the s
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sense as for rational polygons. The relation to the asymm
ric barrier billiard is discussed in Sec. III. Section IV pr
sents numerical evidence that the Poincare´ map is typically
weak mixing on the invariant sets. In Sec. V, we draw co
clusions and give an outlook.

II. THE CIRCULAR ANDREEV BILLIARD

Let us first consider the conventional circular billiard in
magnetic field with strengthB directed perpendicular to th
plane. The classical motion of a particle with massm, charge
q, and speedv confined inside a circle with specular refle
tions is integrable; see Ref.@12# and references therein. Th
orbits consist of a series of arcs of circles with the Larm
radiusR5mv/(qB). Without loss of generality, we scale th
radius of the billiard and the absolute value of the mom
tum to unity. If R,1, some orbits form complete circle
entirely inside the boundary. Ignoring these complete circ
we can specify each orbit by giving the sequence of its
sitions and directions immediately after each impact at
boundary. The position on the circular boundary is para
etrized by the arclengthfP@0,2p). The direction of the or-
bit after impact is labeled by the angle of reflectiona
P@0,p#, or by the tangential momentump5cosaP@21,1#.
Elementary geometry depicted in Fig. 1 gives the Poinc´

FIG. 1. Part of a typical trajectory~solid arcs of circles! with
specular~S! and Andreev~A! reflections in the circular Andreev
billiard. Dashed lines serve for the construction of maps~1!–~6!.
©2002 The American Physical Society21-1
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JAN WIERSIG PHYSICAL REVIEW E 65 036221
map, i.e., the discrete bounce map from thenth to the (n
11)th collision with the boundary

fn115fn1v~pn! ~mod 2p!, ~1!

pn115pn , ~2!

with

v~p!52 arctanS RA12p2

11Rp D ; ~3!

modulo 2p restricts the variable to the interval@0,2p). The
function v(p) is illustrated in Fig. 2. Note the broken time
reversal symmetry,v(2p)Þ2v(p).

The properties of the maps~1! and ~2! are related to the
continuous-time evolution in a simple manner: conservat
of p corresponds to conservation of angular momentum;
godic motion on an invariant circlep5const for irrationalv
is related to ergodic motion on a two-dimensional invaria
torus; families of fixed points for rationalv correspond to
resonant tori foliated by periodic orbits.

The situation with a superconducting interface atf
P(0,b) is illustrated in Fig. 1. For simplicity, let us firs
assume that the quasiparticles are exact at the Fermi en
i.e., «50. An Andreev reflection at the interface is then ju
a change of sign of the tangential momentump; the replace-
ment of an electronlike quasiparticle by a holelike quasip
ticle with the same energy andvice versacan be ignored,
since the simultaneous change of the sign of the charge
the mass does not alter the dynamics. Incorporating
change of the sign ofp at the interface into the Poincar´
maps~1! and ~2! gives

fn115fn1v~pn! ~mod 2p!, ~4!

pn115pnF~fn!, ~5!

with

F~f!5H 21 if 0,f,b,

1 otherwise.
~6!

The tangential momentump is no longer a constant of mo
tion, but upu is. An invariant setupu5p0.0 consists of two
circles p5p0 and p52p0, which are separated in phas
space (f,p). The topology of this situation is schematical

FIG. 2. v as function ofp according to Eq.~3! with R.1
~solid!, R51 ~dashed!, andR,1 ~dotted!. The linesv5p andv
52p are identified.
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illustrated in Fig. 3~a!. An invariant surface of the
continuous-time dynamics is obtained from the invariant
by attaching circles as shown in the sequences of Figs. 3~a!–
3~d!. The circles represent the radial motion, which is n
contained in the Poincare´ map: after leaving the boundary
the radial coordinate decreases until it reaches its minim
then it increases again until it reaches its maximum at
boundary. At a normal-conducting boundary point, this p
is a full loop. Hence, we attach such a circle to each poin
the setfP(b,2p) and pP$p0 ,2p0% @solid lines in Fig.
3~b!#. At a superconducting boundary point,p changes to
2p and we have to trace the path once again to obtain a
loop. Hence, we connect each pointfP(0,b) and p5p0
with the opposite pointp52p0 @dashed lines in Fig. 3~c!#
and vice versa. The resulting surface has the topology of
two-handled sphere~genus 2! as illustrated in Fig. 3~d!. At
the critical pointsf50 and f5b the motion is not well
defined. Two neighboring orbits hitting the boundary of t
billiard at different sides of a critical point separate fro
each other by moving along different handles of the invari
surface. This is fully analogous to the situation near criti
corners in rational polygonal billiards; cf., e.g.,@5#.

Let us now briefly demonstrate that the situation does
change qualitatively when the quasiparticles are not exac
the Fermi energy, i.e.,«.0. The electronlike quasiparticle
with tangential momentumpe is reflected in a holelike qua
siparticle with phÞ2pe . Both particles have differen
Larmor radius, resulting in a differentv. However, if we
redefine the tangential momentum asp̃5ap1b with a
52c/(pe2ph), b52a(pe1ph)/2, 0,c<1, and also rede-
fine v correspondingly then we recover maps~4! and ~5!.
Hence, it is sufficient to consider«50 as we will do in the
following.

III. THE ASYMMETRIC BARRIER BILLIARD

Before analyzing maps~4! and ~5! in more detail, we
discuss an interesting relation to a specific rational polygo
billiard. A particle with unit mass moves freely inside a pol
gon consisting of a vertical line of lengthb placed in a rect-
angle with widthL21L1 and normalized height 1; see Fig
4. The symmetric caseL25L1 with b51/2 is the usual

FIG. 3. Construction of the invariant surfaces from the invaria
sets. Dotted lines mark the superconducting interface. Thick d
mark the critical points.
1-2
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PSEUDOINTEGRABLE ANDREEV BILLIARD PHYSICAL REVIEW E65 036221
barrier billiard @13–15#; more general cases have been co
sidered in@16–18#. Again, the trivial energy dependence
scaled away by setting the energy to 1/2, or equally the m
nitude of the momentum (px ,py) to 1. Starting with an ini-
tial momentum, only a finite number of directions can
achieved during time evolution, stemming from the fact th
all angles in the polygon are rational multiples ofp. In phase
space, the motion takes place on two-dimensional invar
surfaces (upxu,upyu)5const. The general formula for the ge
nus of such surfaces@5# gives value 2 due to the critica
corner at the end of the barrier.

It is convenient to consider the barrier billiard as tw
rectangular billiards, one withx>0 and one withx<0, con-
nected by the passagex50, y.b. Suppose for a momen
that the passage is closed,b51. For each of the two inte
grable rectangular billiards we introduce action variablesI x
5upxuL/p and I y5upyu/p, whereL stands forL2 and L1.
The time dependence of the angle variables is given
fx(t)5vxt (mod 2p) and fy(t)5vyt (mod 2p) with the
frequenciesvx5p2I x /L2 and vy5p2I y . The flow on the
torus is ergodic if and only if the winding numberr
5vy /vx5I yL

2/I x is irrational. When the passage is ope
b,1, the particle can move from one rectangle to the ot
one. We label the rectangles with the sign ofx,s561. We
then introduce the Poincare´ sectionx50, i.e., we look at the
line in configuration space wheres(t) possibly changes
Choosing the origin of the angle variables and the bar
length b such that the passage is given by 0,fy,b
52p(12b), we get the map

fy,n115fy,n12pr~sn! ~mod 2p!, ~7!

sn115snF~fn!. ~8!

Even though the functions 2pr and v are quite different,
maps~7! and ~8! are related to the maps~4! and ~5! in the
following sense. Consider an orbit (f0 ,p0),(f1 ,p1), . . . in
the Poincare´ map of the Andreev billiard~4!, ~5!. Denote the
two ‘‘frequencies’’ as v15v(upu)mod 2p and v25v
(2upu)mod 2p. The family of orbits parametrized by all ac
cessible initial conditions (f0 ,p0) ~with fixed v1,v2) is an

FIG. 4. Asymmetric barrier billiard, rectangle with a vertic
line connecting the origin of the coordinate system (x,y)5(0,0)
with the point (x,y)5(0,b).
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invariant set and related to an invariant surface of the A
dreev billiard as described in Sec. II. Consider now an o
(fy,0 ,s0),(fy,1 ,s1), . . . in maps ~7! and ~8! with 2pr
(11)5v1 and 2pr(21)5v2. This can be achieved by
constructing a barrier billiard withL15v1upx /pyu/(2p)
andL25v2upx /pyu/(2p) where (px ,py) is the initial mo-
mentum. The family of orbits parametrized by all accessi
initial conditions (fy,0 ,s0) @with fixed (px ,py),L

1, andL2#
corresponds to an invariant surface of the barrier billia
The two considered families of orbits are identical if w
identify fy with f, ands with sign(p). This interesting re-
lation between orbits indicates that invariant surfaces in
circular Andreev billiard not only have the same topology
in the barrier billiard, but also the dynamics on these surfa
~restricted to the chosen Poincare´ surfaces of section! have
typically the same ergodic properties. We will discuss t
issue in detail in the following section. It is to emphasize th
for our purpose it is not relevant that this kind of equivalen
is not complete~we have ignored the trivial circles lying
entirely inside the billiard boundary forR,1) and possibly
not bijective~i.e., given a family of orbits in the barrier bil
liard there may be no counterpart in the Andreev billiard!. A
complete correspondence between the barrier and circ
Andreev billiards is not expected since the former one
symmetric under time reversal whereas the latter one is

Note that both maps have four points at which the dyna
ics is discontinuous, (fy ,s)5(0,61) and (fy ,s)5(b,
61). In the Andreev billiard these points are two copies
the two critical points; see Fig. 3~a!. In the barrier billiard,
the points are four copies of the critical corner.

IV. DYNAMICS ON THE INVARIANT SETS

We now discuss the dynamics of the piecewise line
area-preserving maps~4! and ~5! on the invariant sets
Clearly, the dynamics is not chaotic, since all Lyapunov e
ponents are zero. However, weaker ergodic properties, s
as, mixing, weak mixing, and ergodicity may be prese
First, ergodicity on the invariant sets follows directly fro
the fact that an orbit of maps~4! and~5! has a counterpart in
maps~7! and~8!, which is typically ergodic because the flo
on the invariant surfaces in rational polygons is ergodic a
not mixing @8#. However, mixing behavior of maps~4! and
~5! cannot be excluded with this reasoning. We do this n
merically by iterating Eqs.~4! and ~5! and computing the
time-averaged autocorrelation function~AF!

Rz~ j !5
^zn1 j zn&

^zn
2&

, ~9!

where z stands forp2^p& and f2^f&, respectively. We
have found that the AF typically does not decay to ze
which excludes the mixing property. However, the integra
AF

Rz, int~n!5
1

n (
j 50

n

uRz~ j !u2 ~10!
1-3
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JAN WIERSIG PHYSICAL REVIEW E 65 036221
is found to vanish according to a power law,n2D2 with 0
,D2,1 for largen; D2 is the correlation dimension of th
spectral measure@19#. The example in Fig. 5 shows that th
integrated AF for bothpn and fn clearly obeys the powe
law with D2'0.513 and D2'0.577, respectively. We
observe qualitatively identical behavior for several nontriv
functionsf (pn ,fn) in a more or less pronounced way, whic
is consistent with weak mixing as maximal ergod
property.

However, this does not directly imply that the continuou
time evolution is also weak mixing on the invariant surfac
For example, the barrier billiard in Fig. 4 is not weak mixin
sincey(t) is a periodic function. Nevertheless, since we ca
not find such a trivial component in the continuous-time e
lution of the Andreev billiard, we believe that it is wea
mixing, but this certainly needs further studies.

From our results we draw the following picture of th
motion in configuration space; cf. Fig. 1. Starting with
small cluster of initial conditions with fixed tangential mo
mentum at the boundary away from the superconducting
terface, the particles move collectively along skipping traj
tories with constant mean angular velocity@vv(p) divided
by the arclength of the orbits# until the superconducting re
gion is met. Then, the sign of the tangential momentum
inverted. Elementary geometry shows that the mean ang
velocity changes. At the next collision with the superco
ducting region the same thing happens. Orbits reaching
boundary at different sides of a critical point separate a
leaving the boundary. Hence, the cluster of initial conditio
starts to spread out on the invariant surface. However, w
mixing allows occasional reclusterings with decreasing f
quency~the AF does not decay to zero, but the integrated
does!.

Finally, we address the two limiting cases of zero a
high magnetic fields. In the zero-field limit, time-revers
symmetry is recovered,v(2p)52v(p). All orbits are self-
retracing and periodic. The phase space is foliated by p
odic orbits rather than by two-dimensional surfaces. In
regime of high magnetic field,v(p) is small and close to
v(2p). This situation corresponds to the symmetric barr
billiard with small r.

FIG. 5. Integrated autocorrelation functionRz, int(n) for b
51/2, R51/4, andp053/4 in a ln-ln plot: the upper set of point
refers toz5p2^p& ~solid line is the linear fit!, while the lower set
of points refers toz5f2^f& ~dashed line!.
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V. CONCLUSION AND OUTLOOK

We have studied a kind of pseudointegrable system,
circular Andreev billiard. It is different from known pseudo
integrable systems in three respects:~i! it does not belong to
the class of polygonal billiards;~ii ! it is not symmetric under
time reversal; and~iii ! it has a nontrivial foliation of energy
surfaces by invariant surfaces of genus 2 and two-param
families of periodic orbits ~not touching the billiard
boundary!. We have shown that the critical points, i.e., th
boundary points separating normal and superconducting
gions, play the role of critical corners in polygons. Moreov
we have demonstrated that the dynamics on invariant
faces in the circular Andreev billiard have typically the sam
ergodic properties as in the asymmetric barrier billiard~re-
stricted to the chosen Poincare´ surfaces of section!. This
finding has been used to show that the Poincare´ map is er-
godic on the invariant sets. Moreover, we have provided
merical evidence that the Poincare´ map is generically weak
mixing.

Weak mixing as maximal ergodic property implies inte
esting spectral properties@20# and anomalous transpor
Recent studies in these directions on rational polyg
@10,11,16# should be easy to carry over to the circular A
dreev billiard.

Of particular interest is the quantum mechanics of
circular Andreev billiard because of two reasons. First, d
to the pseudointegrability we expect an exotic quantu
classical correspondence as in rational polygons@15#. Sec-
ond, as for rational polygons we might observe intermedi
energy-level statistics@21#, which are, however, modified by
the broken time-reversal symmetry and the nontriv
foliation.

The link between the two different classes of systems m
also throw some light on one aspect of the proximity effe
in chaotic Andreev billiards, viz., the appearance of a gap
the local density of states in an energy interval above
Fermi energy. Random matrix theory can model this g
@22,23#, but the semiclassical theory predicts an exponen
suppression of the density of states@24,25#. One origin of
this discrepancy could be the diagonal approximation use
the semiclassical theory@26#. However, our finding indicates
another possible explanation. It is well known that the se
classical treatment of polygonal billiards requires not on
periodic orbits but also diffractive orbits, that is orbits sta
ing and ending at critical corners; see e.g.,@27# and refer-
ences therein. An interesting research project would be
incorporate analogously diffractive orbits~stemming from
the critical points! in the semiclassical theory of Andree
billiards and see if this removes the discrepancy to the r
dom matrix theory. This idea is supported by the fact th
pointlike scatterers~diffraction! in Andreev billiards gives
rise to a gap in the spectrum near the Fermi energy@28#.
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