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Pseudointegrable Andreev billiard
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A circular Andreev billiard in a uniform magnetic field is studied. It is demonstrated that the classical
dynamics is pseudointegrable in the same sense as for rational polygonal billiards. The relation to a specific
polygon, the asymmetric barrier billiard, is discussed. Numerical evidence is presented indicating that the
Poincaremap is typically weak mixing on the invariant sets. This link between these different classes of
dynamical systems throws some light on the proximity effect in chaotic Andreev billiards.
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[. INTRODUCTION sense as for rational polygons. The relation to the asymmet-
ric barrier billiard is discussed in Sec. Ill. Section IV pre-
Billiards have played a prominent role in the understand-sents numerical evidence that the Poincamap is typically
ing of classical and quantum mechanics. In such a system,weak mixing on the invariant sets. In Sec. V, we draw con-
particle moves freely in a domain with specular reflections aclusions and give an outlook.
the boundarythe angle of reflection equals the angle of in-

cidence; see, e.g.[1]. Billiards of a different kind are real- II. THE CIRCULAR ANDREEV BILLIARD
ized in ballistic mesoscopic samples connected to a super- ] . ) ) S
conductor[2,3]. The boundary of such aAndreev billiard Let us first consider the conventional circular billiard in a

[4] consists of normal-conducting regions with specular reinagnetic field with strengtB directed perpendicular to the
flections and superconducting regions with Andreev reflecPlane. The classical motion of a particle with masscharge
tions, whereby electronlike quasiparticles with charge, a, anq speeab confined inside a circle with specular_ reflec-
massm, and energy above the Fermi energy in the normal tions is mte_grable; see Rdf12] and refgrence; therein. The
metal are retroreflected as holelike quasiparticles with charg@rbits consist of a series of arcs of circles with the Larmor
g, mass—m, and energy- ¢. In the absence of a magnetic rad!usR=mv/(qI_3). Without loss of generality, we scale the
field, retroreflected orbits are self-retracing and, thereforefadius of the billiard and the absolute value of the momen-

periodic. The presence of a magnetic field allows for a richefUm to unity. If R<1, some orbits form complete circles
spectrum of dynamical behavip4]. entirely inside the boundary. Ignoring these complete circles,
In this paper, we study an interesting Andreev billiard, the® can specify each orbit by giving the sequence of its po-
circular Andreev billiard in a uniform magnetic field. Our Sitions and directions immediately after each impact at the
analysis will lead one to the conclusion that boundary pointfoundary. The position on the circular boundary is param-
separating normal and superconducting regions, hencefor@frized by the arclengtt < [0,27r). The direction of the or-
called critical points have the same consequences on th&it after impact is labeled by the angle of reflection
classical dynamics asritical cornersin rational polygonal ~ €[0.7], or by the tangential momentupy=cosae[—1,1].
billiards. In such a polygon, all angleg=m;x/n; between Elémentary geometry depicted in Fig. 1 gives the Poincare

sides are rationally related t@, wherem;,n;>0 are rela-
tively prime integers. The free motion inside a rational poly-
gon is characterized gsseudointegrablé5] since it shares
some properties of integrable systertig:the phase space is
foliated by two-dimensional invariant surfack&7]; (ii) the
flow on these surfaces is ergodic and not mixiB§) and, in
particular, not chaoti¢see, e.g.[9] for the definition of er-
godic propertiek Yet, in the presence of critical corners with
m;>1 the dynamics is more complek) the genus of the
surfaces is greater than of&; (ii) the dynamics is not qua-
siperiodic; and(iii) presumably weak mixing, but this is
proven only for a special subclass; see, €8], Numerical
evidence for weak mixing has been reportedi,11].

The paper is organized as follows. In Sec. Il, we introduce
the circular Andreev billiard and derive its Poincarep,
which describes the collision-to-collision discrete dynamics.
We show that the dynamics is pseudointegrable, in the same

superconductor

0=p

FIG. 1. Part of a typical trajectorysolid arcs of circleswith
specular(S) and Andreev(A) reflections in the circular Andreev
*Email address: jwiersig@mpipks-dresden.mpg.de billiard. Dashed lines serve for the construction of méps-(6).
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FIG. 2. w as function ofp according to Eq.3) with R>1
(solid), R=1 (dasheg, andR< 1 (dotted. The linesw=7 and w
= —qr are identified.

map, i.e., the discrete bounce map from tith to the f
+1)th collision with the boundary

bnr1=dnt@(py)  (mMod2m), D
Pn+1=Pn> 2
with
Ry1—p?
w(p)=2 arctaré 1+—R’S> 3

modulo 2 restricts the variable to the intervid,27). The

function w(p) is illustrated in Fig. 2. Note the broken time-

reversal symmetryp(—p) # — o(p).
The properties of the mafdd) and (2) are related to the
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a) b)

FIG. 3. Construction of the invariant surfaces from the invariant
sets. Dotted lines mark the superconducting interface. Thick dots
mark the critical points.

illustrated in Fig. 8). An invariant surface of the
continuous-time dynamics is obtained from the invariant set
by attaching circles as shown in the sequences of Figs-3
3(d). The circles represent the radial motion, which is not
contained in the Poincammap: after leaving the boundary,
the radial coordinate decreases until it reaches its minimum;
then it increases again until it reaches its maximum at the
boundary. At a normal-conducting boundary point, this path
is a full loop. Hence, we attach such a circle to each point of
the set¢ e (B,2m) and pe{pg,—Po} [solid lines in Fig.
3(b)]. At a superconducting boundary poimt,changes to

—p and we have to trace the path once again to obtain a full

continuous-time evolution in a simple manner: conservationoop. Hence, we connect each poigts (0,8) and p=p,
of p corresponds to conservation of angular momentum; efwith the opposite poinp=—p, [dashed lines in Fig.(®)]

godic motion on an invariant circle= const for irrationake

andvice versa The resulting surface has the topology of a

is related to ergodic motion on a two-dimensional invarianttwo-handled spherégenus 2 as illustrated in Fig. @l). At

torus; families of fixed points for rationab correspond to
resonant tori foliated by periodic orbits.
The situation with a superconducting interface ét

the critical points¢=0 and ¢= 3 the motion is not well
defined. Two neighboring orbits hitting the boundary of the
billiard at different sides of a critical point separate from

€(0,8) is illustrated in Fig. 1. For simplicity, let us first each other by moving along different handles of the invariant
assume that the quasiparticles are exact at the Fermi energyurface. This is fully analogous to the situation near critical
i.e.,e=0. An Andreev reflection at the interface is then justcorners in rational polygonal billiards; cf., e.g5].

a change of sign of the tangential momentpnthe replace-

Let us now briefly demonstrate that the situation does not

ment of an electronlike quasiparticle by a holelike quasiparchange qualitatively when the quasiparticles are not exact at

ticle with the same energy andce versacan be ignored,

the Fermi energy, i.eg>0. The electronlike quasiparticle

since the simultaneous change of the sign of the charge ariith tangential momenturp, is reflected in a holelike qua-
the mass does not alter the dynamics. Incorporating theiparticle with p,# —p.. Both particles have different
change of the sign op at the interface into the Poincare Larmor radius, resulting in a differens. However, if we

maps(1) and(2) gives

bni1=dnt+ w(pp) (mod 2mr), 4
Pn+1=Pn®@(dn), (5)
with
-1 if 0<¢<p,
P(¢)= 1 otherwise. ©

The tangential momentum is no longer a constant of mo-

tion, but|p| is. An invariant setp|=py>0 consists of two

redefine the tangential momentum ps=ap+b with a
=2c¢/(pe—Ppp), b=—a(pe+pn)/2, 0<c<1, and also rede-
fine w correspondingly then we recover ma@ and (5).
Hence, it is sufficient to consider=0 as we will do in the
following.

IIl. THE ASYMMETRIC BARRIER BILLIARD

Before analyzing map$4) and (5) in more detail, we
discuss an interesting relation to a specific rational polygonal
billiard. A particle with unit mass moves freely inside a poly-
gon consisting of a vertical line of lengthplaced in a rect-

circles p=py and p=—pgy, which are separated in phase angle with widthL ~+L™* and normalized height 1; see Fig.
space ¢,p). The topology of this situation is schematically 4. The symmetric case " =L* with b=1/2 is the usual
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invariant set and related to an invariant surface of the An-
dreev billiard as described in Sec. Il. Consider now an orbit
(¢y.0:50),(by1,51), ... in maps(7) and (8) with 2mp
(+1)=w" and 2mp(—1)=w . This can be achieved by
- constructing a barrier billiard with. "= w " |p,/p,|/(27)
andL™=w"|pyx/py|/(27) where py,p,) is the initial mo-
mentum. The family of orbits parametrized by all accessible
initial conditions (#y ¢,So) [with fixed (py,py),L ", andL "]
b corresponds to an invariant surface of the barrier billiard.
The two considered families of orbits are identical if we
identify ¢, with ¢, ands with sign(p). This interesting re-
R lation between orbits indicates that invariant surfaces in the
| I I I — _circular An_dreg\{ billiard not only have th_e same topology as
in the barrier billiard, but also tr]e dynamics on these surfaces
FIG. 4. Asymmetric barrier billiard, rectangle with a vertical (restricted to the chosen Poincaserfaces of sectigrhave
line connecting the origin of the coordinate systeryyj=(0,0)  typically the same ergodic properties. We will discuss this
with the point ,y)=(0,b). issue in detail in the following section. It is to emphasize that
for our purpose it is not relevant that this kind of equivalence
barrier billiard[13—15; more general cases have been conds not complete(we have ignored the trivial circles lying
sidered in[16—18. Again, the trivial energy dependence is entirely inside the billiard boundary f&®<<1) and possibly
scaled away by setting the energy to 1/2, or equally the magpot bijective(i.e., given a family of orbits in the barrier bil-
nitude of the momentumpy,p,) to 1. Starting with an ini- liard there may be no counterpart in the Andreev billjarl
tial momentum, only a finite number of directions can becomplete correspondence between the barrier and circular
achieved during time evolution, stemming from the fact thatAndreev billiards is not expected since the former one is
all angles in the polygon are rational multiplesmofin phase symmetric under time reversal whereas the latter one is not.
space, the motion takes place on two-dimensional invariant Note that both maps have four points at which the dynam-
surfaces [p,/,|py|) = const. The general formula for the ge- ics is discontinuous, ¢,,s)=(0,=1) and (#y,s)=(B,
nus of such surfacegs] gives value 2 due to the critical +1). In the Andreev billiard these points are two copies of
corner at the end of the barrier. the two critical points; see Fig.(&. In the barrier billiard,
It is convenient to consider the barrier billiard as two the points are four copies of the critical corner.
rectangular billiards, one witk=0 and one wit,x=0, con-
nected by the passage=0, y>b. Suppose for a moment
that the passage is closdu=1. For each of the two inte-
grable rectangular billiards we introduce action variables We now discuss the dynamics of the piecewise linear,
=|py/L/7 andl,=|py|/, whereL stands forL.~ andL*.  area-preserving map#&) and (5 on the invariant sets.
The time dependence of the angle variables is given bylearly, the dynamics is not chaotic, since all Lyapunov ex-
d«(t)=w,t (mod 2m) and ¢, (t)=w,t (mod27) with the  ponents are zero. However, weaker ergodic properties, such
frequenciesw,= 7%, /L? and w,=7?l,. The flow on the as, mixing, weak mixing, and ergodicity may be present.
torus is ergodic if and only if the winding numbgr  First, ergodicity on the invariant sets follows directly from
:wy/wleyl-zllx is irrational. When the passage is open,the fact that an orbit of mapg) and(5) has a counterpart in
b<1, the particle can move from one rectangle to the othemaps(7) and(8), which is typically ergodic because the flow
one. We label the rectangles with the signxg§=+1. We  on the invariant surfaces in rational polygons is ergodic and
then introduce the Poincasectionx=0, i.e., we look at the not mixing[8]. However, mixing behavior of map@) and
line in configuration space whers(t) possibly changes. (5) cannot be excluded with this reasoning. We do this nu-
Choosing the origin of the angle variables and the barriefmerically by iterating Eqs(4) and (5) and computing the
length b such that the passage is given by<@,<g  time-averaged autocorrelation functiohF)
=2mw(1—Db), we get the map

¢y,n+1:¢y,n+27Tp(sn) (mod 2m), (7) R.(J)=

Sn+1=SnP(Pp). (8)

IV. DYNAMICS ON THE INVARIANT SETS

<Zn+jzn>

(z0)

: €)

. o where z stands forp—(p) and ¢—{(¢), respectively. We
Even though the functions72p and w are quite different, have found that the AF typically does not decay to zero,

maps(7) and (8) are related to the magd) and (5) in the  \which excludes the mixing property. However, the integrated
following sense. Consider an orbitg,po),(¢1,p1), --- I AF

the Poincarenap of the Andreev billiard4), (5). Denote the

two “frequencies” as o =w(|p|)mod27 and w =w n

(—|p|)mod 27r. The family of orbits parametrized by all ac- R, i (N)= 1 > IR (10)
cessible initial conditionsdy,p,) (With fixed ™, ") is an zint ni='
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1 ‘ ‘ : . v V. CONCLUSION AND OUTLOOK

0 o - We have studied a kind of pseudointegrable system, the
RN ' circular Andreev billiard. It is different from known pseudo-
integrable systems in three respec¢isit does not belong to
the class of polygonal billiardsii) it is not symmetric under
time reversal; andiii ) it has a nontrivial foliation of energy
surfaces by invariant surfaces of genus 2 and two-parameter
families of periodic orbits (not touching the billiard
boundary. We have shown that the critical points, i.e., the
boundary points separating normal and superconducting re-
gions, play the role of critical corners in polygons. Moreover,
we have demonstrated that the dynamics on invariant sur-
FIG. 5. Integrated autocorrelation functioR,(n) for g8  faces inthe circular Andreev billiard have typically the same
=1/2, R=1/4, andp,=3/4 in a In-In plot: the upper set of points €rgodic properties as in the asymmetric barrier billiénet
refers toz=p—(p) (solid line is the linear fit while the lower set  stricted to the chosen Poincasairfaces of §ectic)n This
of points refers t@= ¢—(¢) (dashed ling finding has been used to show that the Poincaap is er-
godic on the invariant sets. Moreover, we have provided nu-
is found to vanish according to a power law; ®2 with 0 merical evidence that the Poincareap is generically weak
<D,<1 for largen; D, is the correlation dimension of the mixing.
spectral measurl9]. The example in Fig. 5 shows that the  \Weak mixing as maximal ergodic property implies inter-
integrated AF for botp, and ¢, clearly obeys the power esting spectral propertief20] and anomalous transport.
law with D,~0.513 and D,~0.577, respectively. We Recent studies in these directions on rational polygons
observe quahtauve]y identical behavior for several nontrl'vlal[lo,llllq should be easy to carry over to the circular An-
functlonsf(pn,dm)_ in a more or_Igss pronounce_d way, whlc_h dreev billiard.
is consistent with weak mixing as maximal ergodic  of particular interest is the quantum mechanics of the

property. _ , , , circular Andreev billiard because of two reasons. First, due
However, this does not directly imply that the continuous-, the pseudointegrability we expect an exotic quantum-

time evolution is also yveak mixing on thg invariant Surfa,ces-classical correspondence as in rational polygfi®. Sec-
For example, the barrier billiard in Fig. 4 is not weak mixing ond, as for rational polygons we might observe intermediate

sincey(t) is a periodic function. Nevertheless, since we can-gnergy-level statistici21], which are, however, modified by
not find such a trivial component in the continuous-time eVo{ne proken time-reversal symmetry and the nontrivial

lution of the Andreev billiard, we believe that it is weak foliation.

mixing, but this certainly needs further studies. The link between the two different classes of systems may
From our results we draw the following picture of the 5154 throw some light on one aspect of the proximity effect
motion in configuration space; cf. Fig. 1. Starting with &y chaotic Andreev billiards, viz., the appearance of a gap in
small cluster of initial conditions with fixed tangential mo- i1 |ocal density of states in an energy interval above the
mentum at the boundary away from the superconducting infgrm; energy. Random matrix theory can model this gap
terface, the particles move collectively along skipping trajec{zz,zeg, but the semiclassical theory predicts an exponential
tories with constant mean angullar velodjtyw(p) div_ided suppression of the density of staté®,25. One origin of
by the arclength of the orbiauntil the superconducting re- s giscrepancy could be the diagonal approximation used in
gion is met. Then, the sign of the tangential momentum ispe semiclassical theof26]. However, our finding indicates
inverted. Elementary geometry shows that the mean angulgfother possible explanation. It is well known that the semi-
velocity changes. At the next collision with the supercon-cjassical treatment of polygonal billiards requires not only
ducting region the same thing happens. Orbits reaching thgeindic orbits but also diffractive orbits, that is orbits start-
boundary at different sides of a critical point separate afte;ng and ending at critical corners; see e[@7] and refer-
leaving the boundary. Hence, thg cluster of initial conditionsgpces therein. An interesting research project would be to
starts to spread out on the invariant surface. However, wealqcorporate analogously diffractive orbitstemming from
mixing allows occasional reclusterings with de_creasmg fréthe critical points in the semiclassical theory of Andreev
quency(the AF does not decay to zero, but the integrated ARyjjliards and see if this removes the discrepancy to the ran-
does_). o dom matrix theory. This idea is supported by the fact that
Finally, we address the two limiting cases of zero andyinike scattererddiffraction) in Andreev billiards gives

high magnetic fields. In the zero-field limit, time-reversal |ise to a gap in the spectrum near the Fermi eng2gy.
symmetry is recoveredy(—p) = — w(p). All orbits are self-

retracing and periodic. The phase space is foliated by peri-
odic orbits rather than by two-dimensional surfaces. In the
regime of high magnetic fieldp(p) is small and close to
w(—p). This situation corresponds to the symmetric barrier | would like to thank H. Schomerus for useful discussions
billiard with small p. and critically reading the manuscript.
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